Analytical Solution for Inverse Kinematics Using Dual Quaternions
نویسندگان
چکیده
منابع مشابه
Inverse Kinematics using Quaternions
In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection. The three methods are described in some detail. An analysis is performed where the three methods ar...
متن کامل3D kinematics using dual quaternions: theory and applications in neuroscience
In behavioral neuroscience, many experiments are developed in 1 or 2 spatial dimensions, but when scientists tackle problems in 3-dimensions (3D), they often face problems or new challenges. Results obtained for lower dimensions are not always extendable in 3D. In motor planning of eye, gaze or arm movements, or sensorimotor transformation problems, the 3D kinematics of external (stimuli) or in...
متن کاملAn Analytical Solution for Inverse Determination of Residual Stress Field
An analytical solution is presented that reconstructs residual stress field from limited and incomplete data. The inverse problem of reconstructing residual stresses is solved using an appropriate form of the airy stress function. This function is chosen to satisfy the stress equilibrium equations together with the boundary conditions for a domain within a convex polygon. The analytical solu...
متن کاملAnalytical inverse kinematics with body posture control
This paper presents a novel whole-body analytical inverse kinematics (IK) method integrating collision avoidance and customizable body control for animating reaching tasks in real-time. Whole-body control is achieved with the interpolation of pre-designed key body postures, which are organized as a function of the direction to the goal to be reached. Arm postures are computed by the analytical ...
متن کاملCageIK: Dual-Laplacian Cage-Based Inverse Kinematics
Cage-based deformation techniques are widely used to control the deformation of an enclosed fine-detail mesh. Achieving deformation based on vertex constraints has been extensively studied for the case of pure meshes, but few works specifically examine how such vertex constraints can be used to efficiently deform the template and estimate the corresponding cage pose. In this paper, we show that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2953553